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Caption

Experiment gecmetry for Rev 2862 on 8 January 1988. Solid line is the
Airborne lonospheric Observatory aircraft ground track dot-dashed lins is
the DMSP track mapped down to 300km, and the dash-x line is the
EISCAT scan ground track. The location of the 300km penetration point
of the AIO-AFSAT line-of-sight for 1837UT is plotted. Locations are in
geographic coordinates and all times are UT.

Total ion density, entire polar cap section of Rev 2862 (8 Jan 88). The
heavy line indicates AIO-EISCAT section of pass.

Total ion density, AIO-EISCAT section of Rev 2862 (8 Jan 88). The
heavy line indicates section of pass shown in Figure A-Ola; arrow
indicates point of nearest spatial/temporal coincidence with AIO
observations.

Detrended ion density for AIO-EISCAT section of Rev 2862 (8 Jan 88).
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Experiment geometry for Rev 2876 on 9 January 1988. Solid line is the

Airborne lonospheric Observatory aircraft ground track dot-dashed line is
the DMSP track mapped down to 300km, and the dash-x line is the
EISCAT scan ground track. The location of the 300km penetration point
of the AIO-AFSAT line-of-sight for 1827UT is plotted. Locations are in
geographic coordinates and ail times are UT.
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Caption

Total ion density, entire polar cap section of Rev 2876 (9 Jan 88). The
heavy line indicates AIO-EISCAT section of pass.

Total ion density, AIO-EISCAT section of Rev 2876 (9 Jan 88). The
heavy line indicates section of pass shown in Figure A-02a; arrow
indicates point of nearest spatial/temporal coincidence with AIO
observations.

Detrended ion density for AIO-EISCAT section of Rev 2876 (9 Jan 88).
Detrender cutoff frequency was 0.046875 Hz.
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Experiment geometry for Rev 2961 on 15 january 1988. Solid line is the
Airborne Ionospheric Observatory aircraft ground track dot-dashed line is
the DMSP track mapped down to 300km, and the dash-x line is the
EISCAT scan ground track. The location of the 300km penetration point
of the AIO-AFSAT line-of-sight for 1854UT is plotted. Locations are in
geographic coordinates and all times are UT.

Total ion density, entire polar cap section of Rev 2961 (15 Jan 88). The
heavy line indicates AIO-EISCAT section of pass.

Total ion density, AIO-EISCAT section of Rev 2961 (15 Jan 88). The
heavy line indicates section of pass shown in Figure A-03a; arrow

indicates point of nearest spatial/temporal coincidence with AlO

observations.
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Total ion density, entire polar cap section of Rev 2975 (16 Jan 88). The
heavy line indicates AIO-EISCAT section of pass.

Total jun density, AIO-EISCAT section of Rev 2975 (16 Jan 88). The
heavy line indicates section of pass shown in Figure A-Oda; arrow
indicates point of nearest spatial/temporal coincidence with AIO
observations.

Detrended ion density for AIO-EISCAT section of Rev 2975 (16 Jan 88).
Detrender cutoff frequency was 0.046875 Hz.
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Total ion density, entire polar cap section of Rev 2989 (17 Jan 88). The
heavy line indicates AIO-EISCAT section of pass.

Total ion density, AIO-EISCAT section of Rev 2989 (17 Jan 88). The
heavy line indicates section of pass shown in Figure A-0Sa; arrow
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PREFACE

This report describes the work completed during the second year of a three-year investigation
iito the feasibility of using in-sitw observations of the ionosphere from the DMSP SSIES
sensors to calcuiate parameters which characterize ivnospheric scintillation effects. Work
during this year focused on a coordinated data-collection campaign conducted in January 1988.
During these campaigns, the AFGL Airborne lonospheric Observatory (AlO) and the EISCAT
radar, located in northern No:way, collected data during near-overhead passes of the DMSP F8
satellite. The results of analysis of the SSIES Scintillation Meter (SM) density data collected by
F8 on those passes are presented in this report.

This work is part of a larger effort with an overall objective of providing the USAF Air
Weather Service with the capability of observing ionospheric scintillations, and the plasma
density irregulerities which cause the scintillations, in near real-time and updating models of
ionospheric scintillation with these observations.




1. Introduction

Many modern military systems used for cormmunications, command and control, naviga-
tion, and surveillance depend on reliable and relatively noise-free transmission of radiowave
signals through the earth's ionosphere. Small-scale irregularities in the ionospheric density can
cause severe distortion, known as radiowave scintillation, of both the amplitude and phase of
these signals. A basic tool used in estimating these effects on systems is a computer program,
WBMOD, based on a single-scatter phase-screen propagation model and a number of empiri-
cal models of the global morpnology of ionospheric density irregularities. An inherent weak-
ness of WBMOD is that the irregularity models provide median estimates for parameters with
large dynamic ranges, which can lead to large under- and over-estimation of the effects of the
ionospheric irregularities on a system.

One solution to this problem, at least for near real-time estimates, is to update the
WBMOD irregularity models with observations of the various parameters modeled. One
proposed source for these observations is from the in situ plasma density monitor to be flown
on the Defense Meteorology Satellite Frogram (DMSP) satellites. This study is designed to
assess the applicability of this data set to real-time updates of the WBMOD models. There are
two primary objectives:

(1)  Develop and refire techniques for generating estimates of parameters which
characterize ionospheric scintillation from in situ observations of the ionospheric plasma from
the DMSP SSIES sensors.

(2)  Determine if the parameters calculated from the SSIES data can be used to
determine the scintillation effects on a transionospheric radiowave signal.

This report describes the results obtained during the second year of the study. The focus
during this year was on collecting and processing SSIES data from the DMSP F8 satellite for
two intervals in January 1988 during which the AFGL Airborne lonospheric Observatory
(AlO), an AFGL UHF-beacon scintillation monitor, and the EISCAT incoherent scatter radar
were making measurements in the vicinity of Tromso, Norway.




2. Backgrouad

The propagation model used in the WBMOD program (based on weak-scatter phase-
screen theoryl!)) characterizes the ionospheric electron density irregularities which cause scin-
I'atjon via eight independent parameters!2):

(1)  a: The irregularity axial ratio along the direction of the ambient geomagnetic
field.

(2)  b: The irregularity axial ratio perpendicular to the direction of the ambient
geomagnetic field.

(3)  6: The angle between sheet-like irregularity structures and geomagnetic L shells.

(4)  hy The height of the equivalent phase screen above the earth's surface.

(s v4: The in situ irregularity drift velocity.

(6) o, The outer scale of the irregularity spectrum.

(7)  q: The slope of a power-law distribution which describes the one-dimensional
power density spectrum (PDS) of the irregularities.

(8)  C,L: The height-integrated strength parameter.

The first three parameters (a, b, and é) and the direction of the ambient geomagnetic field
specify the propagation geometry, while the last three (o, q, and C L) specify the spectral
characteristics of the irregularities.

It may be possible to obtain estimates for the values of three of these parameters from
the DMSP SSIES sensors: v4 (from the SSIES lon Drift Meter (DM)), and q and C L (from the
SSIES lon Scintillation Meter (SM)). In this study, we wiil focus on the estimation of C,L from
this data set and consider q and v4 only in terms of the effects of uncertainties in these parame-
ters on the estimates of Ci L. Of the eight parameters, C,L varies the most as a function of
!ccation and time, and has the most profound effect on the accuracy of estimates of scintillation
levels made by the WBMOD model.

In the phase screen propagation theory used in WBMOD?, the C, L parameter 1s act:i-
ally the product of two parameters: C,, the three-dimensional spectral "strength” of the clec
'ron density irregularities at a scale size of 1 km" (related to the structure constant used in clas-
+i. 2] turbulence theory); and L, the thickness of the irregularity layer. The models in WBMOD
‘vere obtained from analysis of phase scintillation data from thc WIDEBAND and HiLat satel-
lites, which will provide estimates of the height-integrated value of C,L rather than indepen-

The cited reference develops the theory in terms of an earlier definition of the strength
parameter, C,, which is defined at a scale size of 27 meters. It is related to Cy according to the
equation C, = (27/1000)1*2C,.




uent measures of C, and L. Because of this, the model was developed for C,L rather than for
Cy and L separately.

The calculation of an estimate of the C,L parameter from topside in situ ion density
observations requires two operations. First, an estimate of C, at the satellite altitude is made
from a finite-length time series of density measurements. Second, the estimate of C, is
converted to an estimate of C,L in some fashion which will account for both the thickness of
the irregularity layer and the variation of Cy, or < ANe2 >, within the layer.

The data set from which the estimates of these parameters are to be obtained will be
cullected by three instruments in the DMSP SSIES (Special Sensor for lons, Electrons, and
Scintillation) sensor package. This data set will contain the following in situ observations:

(1) High time-resolution (24 samples/sec) measurements of the ion density and
measurements of the ion density irregularity PDS at high fluctuating frequencies from the lon
Scintillatior. Meter (SM)P3,

(2) Measurements of the horizontal and vertical cross-track ion drift velocities from
the lon Drift Meter (DM)3),

(3) Measurements of the ion and electron temperatures, the densities of O + and the
dominant light ion (H+ or He +), and the horizontal ram ion drift velocity from the ion
Retarding Potential Analyzer (RPA)4l.

The basic data of this set are the high time-resolution density data from the SM which will be
used to generate estimates of the irregularity PDS. The drift velocity measurements from the
DM and RPA will be used in calculating an estimate of C, from parameters obtained from the
PDS. and the other measurements from the RPA will be used in calculating C, L from C,.

In the first year of this project, techniques for calculating estimates of C,L from the
SSIES data set were developed, and parametric studies were conducted to determine the
uncertainties in the final C, L estimates due to uncertainties in the parameters and procedures
used to calculate the estimates. Since the first SSIES sensor package was not flown until mid-
1987. these studies were conducted using simulated SM density data sets and phase scintillation
data from the Wideband satellite. The results of these studies were reported in Scientific
Report | for this project!® and will be summarized in this report where pertinent.

The second phase, which was begun during this year, will focus on how well these tech-
niques work using data from the DMSP F8 and F9 spacecraft. There will be two investigations
conducted during this phase, (1) an assessment of the validity of the basic assumptions made in

order to calculate an estimate of CyL from a C, measurement made at altitudes of 800 to 850
km. and (2) an analysis of C, L values calculated for selected DMSP orbits. The basis for the




first investigation will be one, or possibly more, coordinated data collcction campaigns in which
a wide range of near-coincident ionospheric measurements will be made in conjunction with
DMSP overflights.




3. Validation of Procedures Used to Calculate q and T}.

The two basic parameters derived from the ion density data for calculating C, L are the
slope (q) and 1Hz intercept (T,) of a linear least-squares fit in log(frequency) and log(power
spectral density (PSD)) to the power-density spectrum (PDS). In the first report for this
project!®), it was found that the following procedures provided the best estimates of q and T,:

a. Detrend the density data by removing a background trend calculated from ejther (1)
a low-pass (Butterworth) filter on the entire data set, or (2) a quadratic least-
squares fit to each 512-point data segment.

b. Window the detrended data using a 30% split-bell cosine window function.
¢. Calculate an estimate of the PDS frcm an FFT of the detrended, windowed data.

d. Smooth the PDS estimate using a 5-point, centered smoothing function with bino-
mial weights.

e. Calculate estimates of q and Ty * . a linear least-squares fit to log(PSD) versus
log(frequency) over the frequen ge 0.2 to 7.0 Hz.

The various parameters in this processing procedure were establish by analysis of sets of simu-
lated SM density data which had been generated for a wide range of values of . While we
were careful to not introduce any a priori bias into the analysis due to the way in which the
simulation data sets were generated, we wanted to validate the procedures using actual obser-
vations.

The main difficulty in assessing the accuracy of the various procedures using "real” data
is that the values for q and T, are not known. One could, however, assess the relative effects of
changing various parameters in these procedures, such as the size of the window or the type of
detrending, by designating the results obtained from one configuration of these parameters as
"truth" and comparing the results obtained using other configurations. As there were no SSIES
SM data available at the time of the inidal study, a sample of phase scintillation data collected
at Poker Flat, Alaska, from the Wideband satellite was used to validate these procedures. This
analysis showed that the relative differences between results obtained from various parameter
configurations were similar to those found in the analysis of the simulation data sets, so we
were fairly confident that the selected procedures were valid.

As a final check, this validation procedure was repeated with a randomly selected
sample of SSIES SM data. Figure 1 shows the raw (upper plot) and detrended (lower plot)
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Figure 1. DMSP SM sensor ion density data from a 20 minute section of Rev 2989. Upper plot
is the raw density record; lower plot is the detrended density obtained by remcving a trend
generated from a low-pass filter with a cutoff frequency of 0.0234375Hz.
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SSIES SM ion density data from satellite F8, Rev 2898, collected over the northern

auroral/polar region. The detrender used was the same as that employed in processing the

Poker Flat/Wideband data, but in this case a 42.66667-second (0.0234375Hz) detrend cut-off

was used. This was selected to correspond to twice the size of the data window (21.3333
- seconds) to remove any detrender effects from the frequency range covered by the PDS.

A total of 120 T,/q analyses were taken from this data set and used in the validation
procedure. Figure 2 shows plots of Aq and Alog(T)) as functions of window severity for each of
the five smoothing cases (no smoothing through 9-point smoothing) for the data in Figure 1.
The same behavior is shown in these plots as was found in analysis of both the simulation data
sets and the Wideband phase data set (see Figures 2 and 7 in Scientific Report No. 18), i.e., the
loss (gain) in dlog(T;) due to windowing (smoothing), and the trends in Aq and Alog(T)) as
rfunctions of window severity and smoother length. The variances for each data point for the

various cases were also similar to those for the simulation and phase data sets. Figure 3
presents the results of the detrender study for this data set. The four curves show the results
using a linear detrend (L), a quadratic detrend (Q), an end-match/remove-mean detrend (E),
and a low-pass filter detrend (F). Again, the results are very similar to those obtained using the
other data sets (see Figures 6 and 8 in Scientific Report No. 18)),

A final issue which could not be resolved until data were available from the SM sensor
was the selection of the frequency range over which the PDS would be fit. The desire is to fit to
as much of the spectrum as possible in the kilometer scale-size regime, but to avoid biasing the
fit with breaks in the spectrum (at the outer scale-size and at any high-frequency "freezing-
scale” size), or by attempting to fit across an artificial break caused by a "noise floor" in the
data. The PDS plots in Figure 4, taken from a section of Rev 2961, show clear examples of a
low-frequency break at about 0.3 Hz (a scale size of roughly 25km) and a possible hign-
frequency break in the PDS in the upper-right plot (time 68105) at about S Hz (roughly 1.5km
scale size). While no rigorous analysis was made to determine the best fit range during this
stage in the project. a large number of spectra were manually reviewed to identify a reasonable
fit range. The straight-line segments overlaying the spectra in Figure 4 show the range finally
selected, 0.3 10 5.0 Hz. We plan to revisit this issue next year as the low-frequency roll-off seen
in Figure 4, at what may be an outer scale. will have an effect on the accuracy of any C, L values
calculated from spectra containing such a feature.
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4. Analysis of SSIES/AIO/EISCAT Campaign Data.

Most of the work during the past year was directed at analysis of the SSIES SM data
collected during a coordinated data-collection campaign conducted during January 1988 in the
vicinity of the EISCAT incoherent radar facility located in northern Norway. This section will
describe the mechanics of the campaign, the procedures developed for processing the SSIES
Scintillation Meter (SM) and Drift Meter (DM) data collected during the campaign, and the
preliminary results obtained from the analysis.

4.1 Campaign Description.

The primary objective of the SSIES/AIO/EISCAT campaign was to make near-coinci-
dent observations of the state of the ionosphere and of a radio signal propagating through the
ionosphere in order to assess the validity of using information from the SSIES SM sensor to
characterize and quantize the effects of scintillation on a transionospheric radio transmission.
The concept was to use estimates of the scintillation parameters C,L and q derived from the
SSIES SM density data to calculate estimates of the level of phase and amglitude scintillation to
be expected on a specific transionospheric satellite communications link, and then to compare
these to the scintillation levels actually observed on that link.

The following data were collected during this campaign:
a. From the DMSP F8 satellite:

(1) In-situ observations of the total ion density (N;) at a data rate of 24
samples/sec from the SSIES SM sensor.

(2) In-situ cbservations of the horizontal (up) and vertical (u,) cross-track
components of the ion drift velocity at a data rate of 6 samples/sec from
the SSIES DM (Drift Meter) sensor.

(3) In-situ observations of precipitating electrons and ions at a data rate of one
energy spectrum per second from the SSJ/4 sensor.

b. From the AFGL Airbcrne lonospheric Observatory (AlO):

(1) Phase and amplitude records of a 250MHz radio transmission from an
AFSAT satellite (#7225).
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{2) All-sky photometer images at three waveciengihs (42:8A, 5377A. end
6300&) at a data rate of (at least) one image per wavelength per minute
from the All-Sky Iinaging Photometer (ASIP).

(3) Ilonospheric soundings at a data-rate of approximately one sounding every
two-to-three minutes from the Digisonde.

c. From the EISCAT incoherent radar:
(1) Electron density profiles along a near-meridian-plane scan.
(2) Electron and ion temperature profiles along a near-meridian-plane scan.
(3) lon drift velocity profiles along a near-meridian-plane scan.

AFGL/LIS is coordinating the analysis of the various AIO and EISCAT data sets and the data
from the DMSP SSJ/4 sensor. Analysis of data from the various SSIES sensors is N'WRA's
1.sponsibility. (Note: We had hoped to process data from the SSIES Retarding Potenti
Analyzer (RPA) sensor to obtain observations of the ion temperature and the ratio of the
number density of O + ions to H+ (or He + ) ions, both of which would have been used in the
calculation of C, L. Unfortunately, this instrument failed prior to the first campaign period.)

One data set was collected during each day of the campaign (8-9 and 15-18 Januar:
1988). The DMSP F8 satellite is in a nominal dawn-dusk orbit which, during the two campaigr
collection intervals, passed the satellitc near the EISCAT facility at around 1830UT. T
observing plan was to have the AlO fly a north-south pattern configured so that the ionospheric
penetration point of the AIO-AFSAT radio link passed near the DMSP orbit track, and fcr the
EISCAT facility to conduct north-south meridian scans roughly aligned with the DMSP track at
the time of the overpass.

4.2 Analysis of the SSIES Campaign Data.

The objective of the analysis of the SSIES data taker during this campaign is to product
<~timates of the level of phase and amplitude scintillation observed on the AIO-AFSAT radin
link. This is done in four stages: (1) convert the raw telemetry data into break-free time senes
of (a) the in-situ ion density and (b) the in-situ ion drift velocity, (2" calculate estimates of C
and q from the ion density data, (3) calculate estimates of C,’ - n C, using models and
observations of the ionospheric height profile, and (4) calcuiate estimates of the values of S,
and 0 4 for the AIO-AFSAT link using the C,L and q values derived from the SSIES observa-
tions and the propagation theory from the WBMOD modell!M2). The processing required in
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each of these stages is described in the following sections. During this year, we have completed
stages la (density data) and 2 for all six near-overhead passes and have completed preliminary
work for stages 3 and 4 using only model information for the C,L calculation. We will com-
plete these stages in the next year as soon as we receive profile data from the EISCAT radar
and scintillation informaiion from the AIO-AFSAT link.

Table 4-01. Time Periods for SSIES Analysis.

Full Set Analysis Set
Date Rev No. Start End Start End
08 Jan 88 2862 18:21:30 18:46:30 18:36:30 18:41:30
09 Jan &8 2876 18:09:30 18:34:30 18:24:30 18:29:30
15 Jan 88 2961 18:37:00 19:02:00 18:51:30 18:56:30
16 Jan 88 297s 18:25:00 18:50:00 18:39:00 18:44:00
17 Jan 88 2989 18:12:00 18:37:00 18:27:00 18:32:00
18 Jan 88 3003 17:5¢ 30 18:24:30 18:15:30 18:20:30

Table 4-01 lists the time periods covered by the SSIES data analysis for each of the six
near-overhead passes. The first set of numbers for each pass indicate the total span of the ion
density time series processed for the pass (25 minutes of data centered on the time at which the
DMSP saiellite reached its northern-most latitude), and the second set indicates the time period
for which the scintillation processing was done (5 minutes of data centered on a time interval
identified by AFGL/LIS). Plots of the geometry for each pass (showing the relative positions
of the DMSP track, the AIO track, the nearest-coincident penetration point of the AlO-
AFSAT link, and the EISCAT radar scan track) and the results of the analyses described in the
following sections for each of the six passes are located in Appendix A.

4.2.1 Stage 1: Converting Telemetry Data to Density Data.

Data from the SSIES sensor were collected at the Air Force Global Weather Central
(AFGWC) and. with the exception of data for 15 January, was placed on save tapes for further
processing at NWRA. Data for 15 January were later provided by Dr. Fred Rich (AFGL/LIS).
Table 4-02 summarizes the SSIES data collected during the campaign which are currently avail-
able at NWRA.




As indicated in this table, the data were provided to NWRA in two quite diiferent physi-
cal and logical formats. The AFGWC-format tapes are copies of fi'le SSP*IESPREPFILE,
which is formatted according to AFGWC's circular file format!®l. The copies are made using
the UNISYS COPY utility, which writes the file to tape in blocks of 1792 36-bit words. The

Table 4-02. Raw SSIES Data Available at NWRA.

Date Time Format!
08 Jan 88 1632-2359 UT AFCWC
09 Jan 88 0000-2359 UT AFGWC
10 Jan 88 0000-0436 UT AFGWC
15 Jan 88 0520-1640 UT AFGWC

1557-2103 UT AFGL
16 Jan 88 0509-2359 UT AFGWC
17 Jan 88 0000-0452 UT AFGWC

1801-2359 UT AFGWC
18 Jan 88 0000-2359 UT AFGWC
19 Jan 88 0000-0427UT AFGWC

' The format entry indicates the format of the tape on which the data currently reside.
Details of these formats are given in the text.

AFGL-format t7.pe contains unformatted-binary records v ritten to tape in blocks of 1087 60-bit
words. While both tapes contain the raw SSIES data fraines and an ephemeris record once pe:
minute, the format of both types of data and the contents of the ephemeris records are
different.

Processing the SSIES SM data from raw tapes to break-free records of ior: density ic a
muiti-step process which, at times, can be somewhat more manual-intensive than was oziginal'y
envisioned. A number of problems were encountered in converting the raw SM telzmetrv iy ¢
ion density measurements, which required the development of tools for editing the data in bo*i:
raw and processed forms to facility the production of break-free (and discontinuity-free) dats
sets (see Appendix B for a discussion of these problems). After working with the data frorn
several passes, the following scheme was developed for routine processing to convert telemetry

voltages to ion density:




1. Convert the format of a raw data tape file into a disk data file. Separate utilities
were required for the AFGWC and AFGL format tapes to unpack and reformat
them.

2. Extract the SM and DM data from of the disk file, along with the ephemeris data
and other miscellaneous data from the SSIES data frames required for processing
(or making sense of ) the SM or DM data, and load it into a file designed for interac-
tive editing (an SMDM file) and an ephemeris file (an EPHEM file). This step used
the unpacking and decoding stages of the code developed for processing the data at
AFGWCl modified as necessary to generate *he desired output files. Again, sepa-
rate processors are recuired for the AFGWC and AFGL formats, but the output
files from this step are identical.

3. Edit the SM data to remove or alleviate problems such as those described in
Appendix B which were identified during the previous step.

4. Generate a file (an SMDEN file) containing total ion density calculated from the
raw SM data in the edited SMDM file. This step uses code from the SM processing
stage of the AFGWC software, modified to (1) access the SMDM files, and (2)
incorporate new processing algorithms to deal with some of the problems identified

in Appendix B. This is typically an iterative process in which new errors/problems

are encountered which require further editing of the raw data.

5. When a final SMDEN file has been built, this is then edited to remove discontinu-
ities introduced by the V... problem described in Appendix B and any other
blatantly erroneous data (such as those shown in Figure B-02d). Breaks in the data,
due to either removai of status flags or delction of bad daca segments, are then filled
1 vy linear interpolation between the last good data on either side of the break.

The res.us of this processing stage are shown in Figures A-xxb (full 25-minute data set) and A-
xxc {S-minute analysis data set) for the six passes, where xx is 01-06 corresponding to Revs
2862. 2876, 2961. 2975, 2989, and 3003, respectively.

4.2.2 Stage 2: Calculate Estimates ot C, and g.

The second stage of processing, calculating estimates for C, and g, follows the process-
ing guidelines developed in the first vear of the project. Once the SM telemetry data has been
converted to density records, this stage can be run (and rerun as necessary) fairly quickly, as

littie human intevvention is required. The steps in this stage are as follows:




1. Detrend the density data by removing a trend iecord geierated by 2 Jow-pass
Butterworth filter with a 0.046875 Hz cutoff frequency. The cutoff frequency is set
to the inverse of the time span of the data sample size used in generating the power
density spectra (21.33333... seconds).

2. Step through the data, selecting 512-point data sets centered on ten-second time
intervals. Apply a 30% split-bell cosine window to each data set.

3. Generate power density spectra (PDS) for overlapping 512-point data samplcs
selected at 10-second intervals throughout the data set. Each data set 1s windowed
with a 30% split-bell cosine taper prior to passing it to an FFT. The resulting PDS is
then smoothed using a 5-point smoothing function with binomial weights.

4. Generate estimates of T, and q by least-squares fit of a linear segment to each PDS
over a frequency range of 0.3 to 5.0 Hz in log(frequency) and log(PSD).

5. Calculate estimates of C, from T, and q using velocity data from the EPHEM :i':
built in step 1b.

The results of this processing stage are shown in Figures A-xxd (detrended density data), A-xx¢c
tdensity data trend), A-xxf (q), and A-xxg (C,) for the six passes.

4.2.3 Stage 3: Calculate Estimates of C L.

The plan is to calculate estimates of C,L from C, in two ways: (1) using only thosc
observations available in the DMSP data set with models for the parameters required which
have not been observed, and (2) using all ionospheric data collected during the campaign, ir
particular the ionospheric profile data from the EISCAT radar scans. In both cases, an esti
mate is made of the effective Jayer thickness, Lg, which is multintied times the C, estityaier
fiom stage 3 in the processing to obtain an value for C,L. The data from EISCAT havc ot e
beer. made available for this part of the processing, so we will describe only the processing done
to calcalate C L using DMSP data and models.

As mentioned earlier, it was hoped that we would have the full set of SSIES instrument:

working during the campaign. but the RPA sensor died during the month of Decembter. 1987
The data from this s*nsor were to be used to calculate the in-situ ion temperature, T, and the
ratio of the number density of O + to the number density of the dominant light ion (usually
H +). The model we will use to calculate the plasma density distribution in the topside iono-
sphere was designed to use these data, it available, to refine internal models of the ioii tempe:-
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ature and ion species distribution(®). The loss of these data is not crucial to this experiment, but
it would have allowed us to determine how useful (or possibly critical) these data might be for
converting C, to a representative estimate of C, L.

With the loss of the RPA, the only data used in generating the profiles from which L ¢ is
calculated are observations of the total ion density from the SM sznsor. The calculation of C, L
for each of the Cy estimates from stage 3 was done as follows:

1. An average density value was calculated from the density trend generated in stage 2
(step 1) for the 21-1/3 second data interval for which the C, estimate is valid.

2. A field-line trace is made from the satellite altitude down to 350km, and model
values for the F2-layer critical frequency (f F2) and height (h, F2) are calculated
from the ITS78 climatological model®®l,

3. TheITS78 values for f F2 and hF2 are iteratively adjusted until the topside profile
model fits through the average density value calculated from the SM density trend
at the altitude of the satellite. The fitting procedure used is described in detail in {8]
(Section 3.2).

4. Anestimate of L. is calculated from this profile using the equation

h
5 2
/ NZ(h) dh
h

b

(4-01]

[
]

el f
N2(h )
e S

where h, is the satellite altitude and hy, is the (modeled) base of the irregularity
layer. In these calculations it is assumed that the irregularity layer exterds one scale
height below the peak of the F2 layer (i.e., hy, = h F2-H, where H is the plasma
scale-height at h  F2).

3. The estimate for C,L is then calculated from

C,L =C_ 1L [4-02]

k “eff
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The results of this processing stage are shown in Figures A-xxh (C,L) and A-xxi (L) for the
six passes.

4.2.4 Stage 4: Calculate Estimates of S and o .

The calculation of S, and ¢ 4 is made using a modified version of the propagation model
in the WBMOD ionospheric scintillation modell'!2l, Besides the estimates of C,L and q, this
model requires information defining the link geometry (AIO and AFSAT locations and AIO
velocity), system parameters (radio frequency and time period over which g4 is calculated),
environment parameters (date, time, sunspot number, and Kp), values for the irregularity axial
ratios (a and b), and values for the in-situ drift velocity of the irregularities. If values for a, b, or
the drift velocity are not provided, the analysis code will use models for these parameters from
WBMOD to calculate estimates. In the calculations reported here, we have used model values
for the drift velocity!') and a 20:1 rod model for the shape of the irregularities (i.e., a = 20 and
b=1). All calculations use a value of 250MHz for the AIO/AFSAT link radio frequency, anc
the u 4 values given are calculated for an 80-second integration interval.

While calculating estimates of S, and 04 using the C,L and q values calculated in the
previous stages is relatively straightforward, calculating estimates of what we expect to find in
the AIO-AFSAT scintillation data complicates the issue considerably. There are two compli-
cating issues here - one concerning the static geometry of the experimental setup (i.e., the rela-
tive locations and times at which the various instruments were collecting data) , and the other
concerning the dynamic geometry (i.e., the relative velocities of the various instruments with
respect to the ionospheric irregularities). Neither of these issues is insurmountable, but both
must be handled carefully to insure a valid comparison between the SSIES and AIO/AFSAT
data sets.

The first issue is a typical problem for any experiment in which several instruments are
attempting to make coincident measurements of the ionosphere, particularly when one instru-
ment is on a satellite, the other is on an aircraft, and the ionosphere being probed is in the very
dynamic aurorul zone. We wish to identify those times when the AIO/AFSAT raypath was
propagating through a section of the ionosphere which had been probed by the DMSP SSIES
sensors, or, in more formal terms, we wish to map the DMSP SSIES observations into the
frame defined by the AIO/AFSAT observations. An accurate job of matching density features
from the SSIES observations with scintillation features in the AIO/AFSAT observations will
require access to both data records. At this time we do not have access to the AIO/AFSAT
records, so we have identified those times when the raypath ionospheric penetration point
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passed closest (in both time and space) to the F2-region track’ of the DMSP satellite, and will
calculate estimates of Sy and v from the SM density data for this time of nearest approach
and for the two ten-second C, L calculation periods prior to and after this time.

The second issue is somewhat more difficult to resolve, although, fortunately, it will
aftect the v 4 calculation only. The level of phase scintillation observed on a particular link will
be a sensitive function of the velocity of the ionospheric irregularities causing the scintillation
with respect to the raypath. For a link involving a low-orbiting satellite, the scanning motion of
the raypath through the irregularities due to the orbital motion of the satellite is usually domi-
nant over the in-situ drift velocity of the irregularities, and one can assume (with varying
degrees of validity) that the irregularities are not moving with respect to the rest of the system.
However, for a slowly changing receiver-transmitter geometry, such as is the case for the
AlO/AFSAT link. the bulk of the phase scintillation is due to the drift motion of the irregulari-
ties which must be either observed or modeled.

In this experiment, we do have observations of the in-situ drift velocity of the iono-
spheric ions at the DMSP altitude from the Drift Meter (DM) and the RPA sensors. The DM
sensor provides the horizontal and vertical cross-orbit-track components of the velocity, and the
RPA provides an estimate ol the component in the along-orbit direction. One can then assume
that the electrostatic potential which is driving this drift maps down field lines, and calculate an
estimate of the drift velocity in the F2 region. There are, however, problems with this. As
stated earlier, the RPA sensor died in December 1987, so these data were not available. In
addition. there are difficulties with the DM sensor data. Previous checks of the DM velocity
data uncovered what appears to be an offset in the sensor orientation with respect to the
satellite velocity vector (i.e., the sensor is not normal to this vector as required by the sensor
design). which resuits in contamination of the two cross-track components by the velocity of the
satellite with respect to the ionospheric plasma (see [7] Volume Va; Rich, private communica-
tion; and Heelis, private communication). In addition, the data from this sensor become less
reliable when the density is low (as it is in most of the cases under study) which is manifested in
an increased scatter in the data. Due to dwindling resources for this project year, we did not
want to tackle this problem in its entirety until next year. We do, however, need to include the
eftects of the plusma drift in the v 4 calculations, so we will use the drift velocity model from
the WBMOD scintillation codel'?. We have also included an estirnate of the aircraft velocity in
the relative velocity calculations, aithough we used only a simple north-south velocity model

" Detined as the trace of the point in the F2 region which maps ups the local field line to the
[DMSP satellite.
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which can be made more realistic in the next year when we add the observed drift velocities
from the DM sensor.

In summary, the values we will present in the following section for Sy and g 4 should be
viewed as first-order estimates, i.e., if the AIO/AFSAT raypath actuaily passed through the
sections of the ionosphere we have assumed at the times we have assumed, and if the actual
drift velocity of the irregularities is near to the velocities generated by our model, these values
should be accurate to within roughly 10-20%. If the situation is markedly different, however,
the values for o 4 may be as much as 60-120% offl*],

4.3 Discussion of Results.

As can be seen by a casual examination of the data plots in Appendix A, we were fortu-
nate in this campaign in that we have data sets from both magnetically quiet (9 and 16 January)
and active (8, 15, 17, and 18 January) periods. The solar fluxes are beginning to recover from
the latest solar minimum, as indicated by a 90-day mean sunspot number ranging from 40 to 45
and the daily number ranging from 57 to 90 over the campaign interval. This translates into
more solar-produced ionospheric plasma, which is important for the production of well-defined
polar-cap patches if these patches are indeed plasma detached from the mid-latitude sunlit
ionosphere equatorward of the dayside convection "throat” and swept into the polar cap
convection patternl!!l. There are several features in these six passes across the northern polar
cap which could possibly be such patches, most notably the feature in Rev 2961 between times
67980 and 68050 which may be a patch in the process of merging into the auroral region.

The primary objective of this particular study, however, is not to go "patch catching,” but
to assess the potential for using the SSIES SM sensor data for making quantitative estimates of
the effects of ionospheric irregularities on transionospheric radio signals. The data for all six
passes have been processed as described previously, and we will discuss the results obtained to
date for each individuaij pass. (The plots of total density, C,L, and q from Appendix A (Figur¢s
A-xxb, h, and g) are repeated as Figures 5-10 in this section for convenience.)

(Note: It became apparent in reviewing these data sets that in order to make sense of
some of the features we will need to look at both the SSIES DM drift data and high time-reso-
lution particle precipitation data from the SSJ/4 sensor to better define the environment in
which the features are imbedded. This is a major task item for the next year of this project.)
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4.3.1 Rev 2862. 8 January 1988.

The data from this pass, shown in Figure §, is representative of moderately disturbed
conditions (six of the preceding eight Kp values were between 4- and 4 +). Several structures
which could be polar cap patches can be seen in the density plot in Figure 5 prior to time 67140
with a lower-density irregularity region from that time to time 67260. Both C,L and q are rela-
tively uniform to about time 67110, when C; L *- 7ins to decrease, q increases, and both become
less uniform. It is tempting to identify the first, higher-density, region prior to time 67140 as
plasma from polar-cap patches and the second, lower-density, region between times 67140 and
67250 as locally-produced auroral-zone plasma, but without information on the convection and
precipitation patterns this is purely conjecture.

The time of near-coincidence with the AIO/AFSAT raypath is indicated with an arrow
labeled AIQO in Figure S, and the calculated estimates for S, and ¢ ¢ for the SM data from this
time and the two 10-second periods on either side of this time are given in Table 3.

Table 3. Propagation Analysis for Rev 2862 (8 January 1988).

AIO/AFSAT Time: 18:39:30 UT
Penetration Point Latituae: 68.62 Longitude: 108.65

Apex
Time  Latitude Longitude C.L q S4 P

67150 69.33 106.66 2.39x103! 1,70 0.28 1.70
67160 68.93 105.50 5.54x1030 2,05 0.14 1.32
67170 68.51 104.39 2.82x103! 169 030 1.82
67180 68.10 103.31 2.74x1031 166  0.30 1.73
67190 67.68 102.29 4.96x10°° 195 013 1.09

SSN: §7 SSN: 40.6

Kp: 3 L'Kp: 28

There is a small patch of enhanced irregularities very near to the identified coincident point,

with calculated vaiues tor Sy of 0.30 inside the patch and 0.14 outside and values for o4 of
about 1.8 radians in 2 patch and 1.1-1.3 radians outside.
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Figure 5. Kesults from the analysis of SSIES SM sensor density data for Rev 2862 on 08 Jan-
uary 1988: (A) Total ion density, (B) C,L, (C) q.
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4.3.2 Rev 2876, 9 January 1988.

This particular pass was during a fairly quiet period (the two preceding Kp values were
both 0+ ), and this is reflected in the quiet nature of the density and irregularity data in Figure
6. There are no patch-like structures present, and the auroral zone is well north of the
AIO/AFSAT coincident point. The corresponding scintillation parameter values for this case
(Table 4) are fairly low, with S4 between 0.03 and 0.07 and ¢ ¢ between 0.07 and 0.24 radians.

Table 4. Propagation Analysis for Rev 2876 (9 January 1988).

AIO/AFSAT Time: 18:27:10 UT
Penetration Point Latitude: 68.22 Longitude: 108.27

Apex
Time  Latitude Longitude CL q S4 I

66410 69.01 108.79 1.64x1030  1.52  0.07 0.20
66420 68.60 107.65 4.94x1029 234  0.04 0.24
66430 68.18 106.56 1.99x1029 213  0.03 0.12
66440 67.76 105.51 2.58x102?  1.46  0.03 0.07
66450 67.34 104.50 5.27x10%° 1.25  0.04 0.09

SSN: 62 SSN: 40.9

Kp: 1 LKP: 14 +
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Figure 6. Results from the analysis of SSIES SM sensor density data for Rev 2876 on 09 Jan-
uary 1988: (A) Total ion density, (B) C,L, (C) q.




4.3.3 Rev 2961, 15 January 1988.

The data on this day (Figure 7) were collected during the most disturbed day of the
month (four Kp values of 6+ or higher during the preceding 24 hours), although the most
severe disturbance ended roughly nine hours prior to the pass. The structure in the pass is
similar to that in Rev 2862, with a patch-like structure between times 67980 and 68050 and
lower-density auroral-zone structure between times 68050 and 68175. The single, isolated
patch in this data set is very interesting in that the character of the irregularity structure in the
poleward half of the patch is quite different from that in the equatorward half. Our current
conjecture is that this patch has recently convected into the auroral precipitation zone, and that
the equatorward half of the patch is now connected to an auroral E-layer with much higher
plasma density than the polar E-layer under the poleward half of the patch. Recent computer
simulations are beginning to show that the presence (or lack of) an enhanced E-region will
affect the growth and vertical mapping of ionospheric irregularities!!?l. (A more detailed analy-
sis of this patch is being pursued further under the auspices of the Defense Nuclear Agency.)

The scintillation parameters for the AIO/AFSAT coincident point are in Table 5. This
is a fairly disturbed case, with §, between 0.4 and 0.5 (nearing strong-scatter conditions), and
1 s values ranging from 2 to $ radians.

Table 5. Propagation Analysis for Rev 2961 (15 January 1988).

AIO/AFSAT Time: 18:54:45 UT
Penetration Point Latitude: 69.17 Longitude: 107.82

Apex
Time  Latitude Longitude C.L q S4 L2

68065 70.07 104.32 2991031 211 031 3.84
68075 69.68 103.13 5.02x1031 216  0.40 5.37
68085 69.27 101.96 8.38x103!  1.82 049 4.21
68095 68.86 100.85 5341031 1.79  0.40 3.22

68105 68.44 99,76 3.56x1031 1.60  0.33 2.02
SSN: 90 SSN: 423.1
Kp: 3. .‘JKP: 42 +
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Figure 7. Results from the analysis of SSIES SM sensor density data for Rev 2961 on 15 Jan-
uary 1988: (A) Total ion density, (B) C,L, (C) q.
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4.3.4 Rev 2975, 16 January 1988.

These data, shown in Figure 8, were taken on a relatively quiet day and are quite similar
to the data from Rev 2876. The AIO/AFSAT coincident point was well equatorward of the
auroral zone, as is reflected in the very low scintillation values in Table 6, with S, of about 0.02
{essentially zero) and v  between 0.1 and 0.2 radians.

Table 6. Propagation Analysis for Rev 2975 (16 January 1988).

AIO/AFSAT Time: 18:42:00 UT
Penetration Point Latitude: 70.04 Longitude: 11C.7S

Apex
Time  Latitude Longitude CL q S4 ag

67300 70.71 109.58 3.55x10%8 278 0.1 0.20
67310 70.33 108.28 8.69x10%8 232 0.2 0.17
67320 69.94 107.04 1.44x102% 167 0.02 0.10
67330 69.54 105.82 3.10x1029  1.82  0.03 0.17
67340 69.14 104.68 3.65x102° 146  0.04 0.13

SSN: 83 SSN: 43.6

Kp: 1- ?JKP: 12+
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Figure 8. Results from the analysis of SSIES SM sensor density data for Rev 2975 on 16 Jan-
uary 1988: (A) Total ion density, (B) C,L, (C) q.
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4.3.5 Rev 2989, 17 January 1988,

Although taken during a quieter period than the data from Rev 2961, the data from this

pass (Figure 9) are more uniformly disturbed throughout the section of the pass near Tromso.

Again, one can identify possible polar cap patches, but there is less difference in the density

- structure of the patches and that in the auroral zone. The C,L values are very uniform

throughout much of this data set, essentially constant from time 66510 to the point where the

satellite left the auroral region, while q is constant only to time 66650. This may be another

manifestation of the behavior of the topside plasma structure when there is a strong underlying

E-region. The scintillation parameters in Table 7 are also fairly uniform, with S, values
between 0.3 and 0.4 and 0 4 values between 4.3 and 5.3 radians.

Table 7. Propagation Analysis for Rev 2989 (17 January 1988).

AIO/AFSAT Time: 18:30:05 UT
Penetration Point Latitude: 68.56 Longitude: 108.69

Apex
Time  Latitude Longitude CL q Sy 04

66585 69.42 108.54 4.06x103! 260 039 5.23
66595 69.02 107.38 3.66x1031 248 036 4.26
66605 68.60 106.27 2.88x1031 266 0.34 4.78
66615 69.19 105.19 1.62x1031 280  0.27 4.32
66625 67.77 104.16 2.75x1030 261 0.33 4,38

SSN: 72 SSN: 43.8
Kp: 2+ )-IKP: 13

29




Rev 2989 - 17 Jan 88
et 1 [ 11 1

1.0 | | ]
-
i
-~
-
VT(ERS) 80420
=
oS
-
k)
- -
-
1 1 ! | I 1 1 |
UT(EEC) 64420 444000 46340 44400 sbbs0 44780 VTieme)
‘ 1 | I | 1 | | | 1
3 .—‘ p—
o 3 = t P
Al
} - -
L
| I I 1 } I i 1§ |
VTI(GEC) ssdde 6840 66400 584640 TR0 UTIBKEC!
a“ar e X 79.70 8. 04 .78 b, 49 6. 18 AT
[l 42 7o 8. 78 9. 33 19, 00 9. 99 18 4@ AON
~r aa or 048. 46 84l. 79 048. 99 0s3. 07 043. 10 AT
APRLAT 74. 84 70. 48 47. 99 4884 68.3) AILAY
MPELEN (2D 70 189. 44 113. 21 104. 03 100. 13 99. 88 AP ILOM
ARY K M 2. 914 2. 30 2. 09 20.477 20. 170 ALY

Figure 9. Results from the analysis of SSIES SM sensor density data for Rev 2989 on 17 Jan-
uary 1988: (A) Total ion density. (B) C,L, (C) q.
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4.3.6 Rev 3003, 18 January 1988.

The data from this pass (Figure 10) are very similar to that from Rev 2989, the main
differences being the location of the equatorward boundary of the auroral zone and the higher
variability in the q parameter. The values for C,L and the scintillation parameters near the
AIO/AFSAT coincident point, however, are a bit higher for this pass (Table 8), with S,
between 0.4 ard 0.5 and 0 4 between 3.3 and 5.7 radians.

Table 8. Propagation Analysis for Rev 3003 (18 January 1988).

AIO/AFSAT Time: 18:18:15 UT
Penetration Point Latitude: 67.14 Longitude: 105.70

Apex
Time  Latitude Longitude ClL q S, 74

65875 67.87 107.39 3.11x103F 259  0.24 491
65885 67.44 106.37 1.22x1032  1.81 043 3.33
65895 67.01 105.39 1.65x1032 2,10 0.50 5.69
65905 66.57 104.45 9.14x1031 231 039 5.66
65915 66.13 103.53 6.58x1031 168 033 2.08

SSN: 68 SSN: 44.18
Kp: 5- LKP: 18+
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Figure 10. Results from the analysis of SSIES SM sensor density data for Rev 3003 on 18 Jan-
uary 1988: (A) Total ion density, (B) C,L, (C) q.




5. Conclusion.

During the year covered by this report, we have completed preliminary processing of the
DMSP SSIES Scintillation Meter data collected as part of the SSIES/AIO/EISCAT coordi-
nated data collection campaign conducted during January 1988. Data from sections of six
passes near Tromso, Norway, have been processed, and predictions have been made of the
level of amplitude and phase scintillation on the radio link between the AIO aircraft and an
AFSAT satellite based on spectral strength (C, L) and slope (q) parameters calculated from the
SM ion density data. A large body of data-processing software was developed to aid in the
reduction and analysis of the data. This software, and the procedures for using it, have been
designed so that they may be easily used for processing data from future campaigns.

In the next year of this project, analysis of the data from this campaign would continue
with the following tasks:

(1)  Conduct a side-by-side comparison of the SM density data to the amplitude and
phase records from the AIO/AFSAT radio link to aid in mapping the results of the SM data
analysis into the AIO/AFSAT geometry.

(2)  Process the SSIES DM plasma drift data and the SSJ/4 particle precipitation
data for each of the passes and establish the location of major structures and boundaries in the
plasma convection and auroral precipitation patterns, both of which are important facets of the
physics underlying the irregularities observed in the SM data and the scintillation observed on
the AIO/AFSAT link.

(3) Compare the EISCAT and Digisonde observations of the ionospheric plasma
density profile to the model profile used to calculate L, ;. Recalculate any C, L values for cases
in which the model did not adequately reproduce the observations.
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Appendix A. Plots of SSIES Campaign Data.

This appendix contains plots of the total ion density data collected from the SSIES SM
=epsor in the six near-overhead passes during the January 1988 SSIES/AIO/EISCAT/AFSA™
data collection campaign and a number of scintillation parameters calculated from these dets.
Included for each pass is the following:

(1) A diagram which shows the relationships in time and location between data col-
lected from the SSIES sensors, the AIO sensors (ionosonde, photometers, and AFSAT
receiver), and the EISCAT radar.

(2) A plot of the total ion density from the SM sensor for a 25-minute segment of the
DMSP orbit centered on the highest latitude reached in that orbit.

(3) A plot of the total ion density for a S-minute segment roughly centered on the time
at which all-sky photometer images were taken (denoted the AIO time period).

(4) A plot of the detrended ion density data (21.33...-sec detrend period) for the AIO
time period.

(3) A plot of the ion density trend for the AIO time period (note - the detrended de+-
was generated by subtracting the trend shown in this plot from the data shown in the total ‘c
density plot).

(6) A plot of the spectral slope parameter (q) for the AIO time period calculated fron
fits to power-density spectra (PDS) extracted from the detrended density data. The data pro-
cessing used a 30% cosine window, a seven-point PDS smoother, and a fit over the range 0.5 i
3.0 Hz to determine q and T, (see processing details in Appendix B.)

(7) A plot of the C, estimates calculated from q and T for the AIO time period.

(8) A plotof the C,L estimates calculated for the AlO time period.

(9) A plot of the effective layer thickness parameter (L) used to convert Cy to C, 1.




DMSP Rev 2862 - 8 January 1988

EXPERIMENT GEOMETRY

/IO3TUT

/'h\ DMSP (300 km)

Aa38 (2)
833

AFSAT "
(300 km) ’ AIO TRACK
I 72 P
1839(4) ,,’
ol 1
/1 1849
a
YA

waoe)d |}
'\RAOAR SCAN

EISCAT ,d (20 MIN CYCLE)

'O’E

20° 30°

Figure A-Ola. Experiment geometry for Rev 2862 on 8 January 1988. Solid line is the
Airborne lonospheric Observatory aircraft ground track, dot-dashed line is the DMSP track
mapped down to 300km, and the dash-x line is the EISCAT scan ground track. The location of
the 300km penetration point of the AIO-AFSAT line-of-sight for 1839 UT is plotted.
Locations are in geographic coordinates and all times are UT.
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SSN: §7

Average SSN: 38.0 (7-day) 40.6 (90-day)
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Figure A-O1b. Total ion density, entire polar cap section of Rev 2862 (8 Jan 88). The heavy
line indicates AIO-EISCAT section of pass.
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Figure A-Oic. Total ion density, AIQ-EISCAT section of Rev 2862 (8 Jan 88). The heavy line
indicates section of pass shown in Figure A-Ola; arrow indicates point of nearest
spatial/temporal coincidence with AIO observations.
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Figure A-01d. Detrended ion density for AIO-EISCAT section of Rev 2862 (8 Jan 88).
Detrender cutoff frequency of was 0.046875 Hz.
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Figure A-01f. Results of C, analysis for AIO-EISCAT section of Rev 2862 (8 Jan 88).
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Figure A-01g. Spectral slope (q) for AIO-EISCAT section of Rev 2862 (8 Jan 88).
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Figure A-01h. C,L for AIO-EISCAT section of Rev 2862 (8 Jan 88).
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Figure A-0li. Effective layer thickness (L) used to convert Cy to C,L for AIO-EISCAT
section of Rev 2862 (8 Jan 88).
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DMSP Rev 2876 - 9 January 1988

EXPERIMENT GEOMETRY
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Figure A-02a. Experiment geometry for Rev 2876 on 9 January 1988. Solid line is the
Airborne lonospheric Observatory aircraft ground track, dot-dashed line is the DMSP track
mapped down to 300km, and the dash-x line is the EISCAT scan ground track. The location of
the 300km penetration point of the AIO-AFSAT line-of-sight for 1827 UT is plotted.
L.ocations are in geographic coordinates and all times are UT.

AIO Time Period: 18:24:30 0 18:29:30

Kp: 1 .‘-'Kp: 14 +

SSN: 62

Average SSN: 42.4 (7-day) 40.9 (90-day)
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Figure A-02b. Total ion density, entire polar cap section of Rev 2876 (9 Jan 88). The heavy

line indicates AIO-EISCAT section of pass.
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Figure A-02c. Total ion density, AIO-EISCAT section of Rev 2876 (9 Jan 88). The heavy line
indicates section of pass shown in Figure A-02a; arrow indicates point of nearest
spatial /temporal coincidence with AIO observations.
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Figure A-02d. Detrended ion density for AIO-EISCAT section of Rev 2876 (9 Jan 88).
Detrender cutoff frequency was 0.046875 Hz.
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Figure A-02¢. Ion density trend for AIO-EISCAT section of Rev 2876 (9 Jan 88). Detrender
cutoff frequency was 0.046875 Hz.
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Figure A-02f. Results of C, analysis for AIO-EISCAT section of Rev 2876 (9 Jan 88).
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Figure A-02g. Spectral slope (q) fcr AIO-EISCAT section of Rev 2876 (9 Jan 88).
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Figure A-02h. C,L for AIO-EISCAT section of Rev 2876 (9 Jan 88).
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Figure A-02i. Effective layer thickness (L,g) used to convert C, to C,L for AIO-EISCAT
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DMSP Rev 2961 - 15 January 1988 3
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Figure A-03a. Experiment geometry for Rev 2961 on 15 January 1988. Solid line is the
Airborne lonospheric Observatory aircraft ground track, dot-dashed line is the DMSP track
mapped down to 300km, and the dash-x line is the EISCAT scan ground track. The location of
the 300km penetration point of the AIO-AFSAT line-of-sight for 1854 UT is plotted.
Locations are in geographic coordinates and all times are UT.

AlO Time Period: 18:51:30 to 18:56:30

Kp: 3. EKP. 42+
SSN: 90
Average SSN: 75.6 (7-day) 43.1 (90-day)
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Figure A-03b. Total ion density, entire polar cap section of Rev 2961 (15 Jan 88). The heavy
line indicates AIO-EISCAT section of pass.
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Figure A-03c. Total ion density, AIO-EISCAT section of Rev 2961 (15 Jan 88). The heavy line
indicates section of pass shown in Figure A-03a; arrow indicates point of nearest
spatial/temporal coincidence with AIO observations.
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Figure A-03d. Detrended ion density for AIQ-EISCAT section of Rev 2961 (15 Jan 88).
Detrender cutoff frequency was 0.046875 Hz.
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Figure A-03e. lon density trend for AIO-EISCAT section of Rev 2961 (15 Jan 88). Detrender
cutoff frequency was 0.046875 Hz.
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Figure A-03f. Results of C, analysis for AIO-EISCAT section of Rev 2961 (15 Jan 88).
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Figure A-03g. Spectral slope (q) for AIO-EISCAT sectinn of Rev 2961 (15 Jan 88).
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Figure A-03h. C,L for AIO-EISCAT section of Rev 2961 (15 Jan 88).
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Figure A-03i. Effective layer thickness (L) used to convert C, to C,L for AIO-EISCAT
section of Rev 2961 (15 Jan 88).
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DMSP Rev 2975 - 16 January 1988
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Figure A-04a. Experiment geometry for Rev 2975 on 16 January 1988. Solid line is the
Airborne lonospheric Observatory aircraft ground track, dot-dashed line is the DMSP track
mapped down to 300km, and the dash-x line is the EISCAT scan ground track. The location of
the 300km penetration point of the AIO-AFSAT line-of-sight for 1842 UT is plotted.

Locations are in geographic coordinates and all times are UT,

AlO Time Period: 18:39:00 to 18:44:00
Kp: 1- EKP: 12+
SSN: 83

Average SSN: 78.6 (7-day) 43.6 (90-day)
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Figure A-04b. Total ion density. entire polar cap section of Rev 2975 (16 Jan 88). The heavy
line indicates AIO-EISCAT section of pass.
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Figure A-Odc. Total ion density, AIO-EISCAT section of Rev 2975 (16 Jan 88). The heavy line
indicates section of pass shown in Figure A-04a; arrow indicates point of nearest
spatial/temporal coincidence with AJO observations.
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Figure A-04d. Detrended ion density for AIO-EISCAT section of Rev 2975 (16 Jan 88).
Detrender cuioff frequency was 0.046875 Hz.
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Figure A-Ode. lon density trend for AIO-EISCAT section of Rev 2975 (16 Jan 88). Detrender
cutoff frequency was 0.046875 Hz.
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Figure A-04f. Results of C; analysis for AIO-EISCAT section of Rev 2975 (16 Jan 88).
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Figure A-04h. C L for AIO-EISCAT section of Rev 2975 (16 Jan 88).
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Figure A-04i. Effective layer thickness (L) used to convert C, to C,L for AIO-EISCAT
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section of Rev 2975 (16 Jan 88).




DMSP Rev 2989 - 17 January 1988

EXPERIMENT GEOMETRY

AFSAT
{300 km)

Figure A-0Sa. Experiment geometry for Rev 2989 on 17 January 1988. Solid line is the
Airborne Ionospheric Observatory aircraft ground track, dot-dashed line is the DMSP track
mapped down to 300km, and the dash-x line is the EISCAT scan ground track. The location of
the 300km penetration point of the AIO-AFSAT line-of-sight for 1830 UT is plotted.
Locations are in geographic coordinates and all times are UT.

AlO Time Period: 18:27:00 to 18:32:00

Kp: 2+ L'Kp: 13
SSN: 72
Average SSN: 79.1 (7-day) 43.8 (90-day)
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Figure A-05b. Total ion density, entire polar cap section of Rev 2989 (17 Jan 88). The heavy
line indicates AIO-EISCAT section of pass.
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Figure A-05c. Total ion density, AIO-EISCAT section of Rev 2989 (17 Jan 88). The heavy line
indicates section of pass shown in Figure A-05a; arrow indicates point of nearest
spatial/temporal coincidence with AIO observations.

A~23

T
e e e e e ey e e e o
S e e R —————



-lo‘

o W RN W WS DN N W N

Cutoff: 21 % sec

- ~160kn r_

. <
<
$
- :-
4
2
¥
M
&
— -
— -
-1.0 l r T vF#?=T l
UT(8EC) 66420 65480 64540 66600 Abb&0 64720 UT(SEC)
OLAT 70. 38 79.76 72. 64 69.72 &6, 49 63. 19 OLAT
oLON 43. 74 32. 72 a3. 13 19. 68 19. 9% 12. 40 AH.ON
ALY 862. 07 062 46 8462. 79 862. 93 8s3. 07 B2, 10 ALT
APILAT 74 24 72. %9 70. 46 &67.98 43. G4 62. 1 APXLAT
APILON 133.70 122. 44 113. 3 106. 02 100. 12 3. 20 APXLOW
APXLY 2. 649 2. 914 21. 323 20. 8393 20. 477 20. 170 APXLY

Figure A-05d. Detrended ion density for AIO-EISCAT section of Rev 2989 (17 Jan 88),
Detrender cutoff frequency was 0.046875 Hz.
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Figure A-0Se. lon density trend for AIO-EISCAT section of Rev 2989 (17 Jan 88). Detrender
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Figure A-05f. Results of C, analysis for AIO-EISCAT section of Rev 2989 (17 Jan 88).
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Figure A-05h. C,L for AIO-EISCAT section of Rev 2989 (17 Jan 88).
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Figure A-05i. Effective layer thickness (L.g) used to convert Cy to C,L for AIO-EISCAT
section of Rev 2989 (17 Jan 88).
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DMSP Rev 3003 - 18 January 1988

EXPERIMENT GEOMETRY
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Figure A-06a. Experiment geometry for Rev 3003 on 18 January 1988. Solid line is the
Airborne lonospheric Observatory aircraft ground track, dot-dashed line is the DMSP track
mapped down to 300km, and the dash-x line is the EISCAT scan ground track. The location of
the 300km penetration point of the AIO-AFSAT line-of-sight for 1818 UT is plotted.
Locations are in geographic coordinates and all times are UT.

AlO Time Period: 18:15:30 to 18:20:30
Kp: §- EZKP: 18+
SSN: 68

Average SSN: 78.1 (7-day) 44.1 (90-day)
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Figure A-06b. Total ion density, entire polar cap section of Rev 3003 (18 Jan 88). The heavy
line indicates AIO-EISCAT section of pass.
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Figure A-06¢. Total ion density, AIO-EISCAT section of Rev 3003 (18 Jan 88). The heavy line
indicates section of pass shown in Figure A-06a; arrow indicates point of nearest
spatial/temporal coincidence with A1O observations.
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Figure A-06d. Detrended ica density for AIO-EISCAT section of Rev 3003 (18 Jan 88).
Detrender cutoff frequency was 0.046875 Hz.
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Figure A-06f. Results of C, analysis for AIO-EISCAT section of Rev 3003 (18 Jan 88).
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Figure A-06g. Spectral slope (q) for AIO-EISCAT section of Rev 3003 (18 Jan 88).
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Figure A-06h. C, L for AIO-EISCAT section of Rev 3003 (18 Jan 88).
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Figure A-06i. Effective layer thickness (L) used to convert Cy to C,L for AIO-EISCAT
section of Rev 3003 (18 Jan 88),
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Appendix B. Anomalous Behavior in the SSIES SM Data.

A number of problems have been encountered in processing data from the SM sensor
on the DMSP F8 satellite, some of them associated with anomalous (or at least unexpected)
behavior in the SM sensor and others caused by problems external to the SM sensor. These
include (1) "floating" voltages for sensor status flags, (2) changes from the electrometer mode
to the differencing-amplifier mode without a zero-point reading from the electrometer, (3)
duplicate SSIES data frames from the DMSP OLS, (4) discontinuous offsets caused by changes
in the ion sensor ground-plane voltage, and (5) miscellaneous odd behaviors. (Note: The
following discussions will presuppose an understanding of the operation of the SM sensor. Full
descriptions can be found in {3}, {4}, and Volume III of (7).)

B.1 "Floating" Status Flags.

The SM data stream includes status {lags which indicate (1) whether the voltage data in
the data frames are directly from the electrometer (EL data) or have been passed through a
differencing amplifier (AMP data), and/or (2) the range setting of a ranging amplifier through
which the EL/AMP data are passed prior to encoding and downlink. These status flags were
designed to be at fixed voitage values outside the range within which the density-data values
were constrained to lie. Unfoitunately, the values being reported for these status flags and the
limit-bands for the density data ars "floating" from their nominal design values, so that occa-
sionally it is almost impossible to determine whether a particular reading is a density value or a
status flag. The processing code provided to AFGWC has been modified to deal with most of
the cases we have encountered, but there are times when the data required manual review and
editing to process it successfully.

B.2 Missing EL-mode Zero Point.

A second problem encountered with the status flags occurs primarily when the iono-
sphere is quite irregular and the sensor is frequently switching between the EL and AMP
modes. In normal operation, when the sensor switches from the EL mode to the AMP mode,
there is an EL reading just prior to the EL-to-AMP flag which establishes the zero point for the
AMP data. On occasion, however, the sensor will switch from AMP to EL at the end of a data
frame and then switch back at the start of the next frame with no intervening data point from
EL mode to serve as a zero point for the AMP-mode data. While an automated code could
undoubtedly be developed to deal with this situation, it was more cost-effective for us simply to
flag these in the automated processing and then hand-correct them by inserting a bogus EL
reading between the two sets of status flags using the raw-data editor and reprocessing.
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B.3 Duplicate/Missing Data Frames.

The problem of duplicate SSIES data-frames in the telemetry stream was identified as a
potential problem during ground checkout of the F8 spacecraft. The problem occurs at aperi-
odic intervals when the OLS telemetry formatter accesses the data buffer from the SSIES
instruments for a one-second data frame prior to the data for this one-second period being
loaded into the buffer by the SSIES microprocessor. The result is that the previous frame is
duplicated in the telemetry stream, and the data from the current frame are lost. We have
found that this occurs at a rate of roughly 35-40 duplicates per orbit (about 0.5%), with five to
eight occurring in our periods of interest.

If there are no status changes in the SM sensor during one of the missing frames, this
can be dealt with fairly simply by interpolating from the last data point in the previous frame to
the first data point in the next frame. If a status flag is missed (and this is not always easy to
determine), deciding what exactly has occurred and correcting/adjusting for this can often be
difficult for a human, much less for an automated computer system. As with the missing EL-
mode zero point problem, we have dealt with the duplicate frame problem by manually
reviewing the telemetry data stream, making our best guess as to what has happened during the
missing one second of data, and then entering a bogus data frame for the missing one. Abcut
50% of the bogus frames we generated contained some sort of status change (range change or
EL/AMP mode change).

B.4 Ground-Plane Voltage Offsets.

It appears that although the voltage on the ground plane of the three ion instruments
should have been de-coupled from the microprocessor and connected to the SENPOT elec-
tronics, the microprocessor can affect the voltage on the ground-plane during the first three
seconds of the 128-second EP/RPA sweep cycle. Figure B-01 is a plot of the SM ion density
data from Rev 2989, and Figure B-02 is a plot of the voltage on the ground-plane (V.. + Vip)
for the same Rev. The features labeled A-H on the voltage plot are three-second periods in
which the voltage has been shifted away from the reading set by SENPOT to a voltage reading
of 12.0-12.5 volts. These all occur during the first three seconds of the EP/RPA sweep cycle.
and only when the SENPOT voltage setting is above roughly 12 voits. The effect of this on the
density data can be seen in the upper plot, where the features are labeled corresponding to
those in the Jower plot.
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Figure B-01. Ion density data record from Rev 2989, 17 Jan 88. Features labeled A, B, etc.,
correspond to features in Figure B-02.
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Figure B-02. Voltage on the ion sensor ground-plane as reported by the V., + V|p data word
in the SSIES telemetry data frame. Features marked A, B, etc., are voltage offsets which occur
in the first three seconds of the 128-second EP/RPA sweep cycle.
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Expanded plots have been made of 10 seconds of density data for features A, B, and D
(Figures B-03 through B-05). When the density is free of irregularities, as in Figures B-03 and
B-04, the discontinuity is easy to spot and can be easily "co:rected” by shifting the offset data to
{1t the ends of the non-offset data. When irregularities are present, as in Figure B-0S, identify-
mg the problem and ther "correcting” it becomes more difficult. We have addressed each case
individually, either shifting the data to fit in with the surrounding densities in cases similar to
that in Figure B-03 and the first two seconds of the offset in Figure B-04, or removing the data
and fitting with a linear interpolation in cases similar to the last second of ‘e offset in Figure B-
04 and the entire three-second period in Figure B-05. A list of the changes made is kept for
tracking possible effects of the “corrections” on the values calculated for Cy and q.

B.5 Miscellaneous "Odd"” Behaviors.

While we encountered a number of "odd" behaviors in the SM density data, only two of
them were seen more than once and were odd enough that they appeared to be artifacts of the
measurement process rather than a pathological ionaospheric behavior. The feature labeled
with an "I" in Figure B-01 is shown in an expanded plot in Figure B-06. This sudden drop in
voltage from the SM sensor, covering a two-second period, did not correlate with any feature in
t  ground-plane voltage, nor did it correlate with anything else.  Fortunately, this case
occurred at a time when the ionosphere was fairly "flat" (i.e., no irregularities), and it was easily
patched by a linear interpolation across the offending two-second period.

The raw data list in Figure B-07, nowever, is indicative of a much larger scale voitage
dropout whir* occurred in a very stiuctured density period. This list icludes the time (seconds
since midnight), voltage reported for the range data word, twenty-four EL /AMP voltages, and
three range flags set by the processing code (RF from the range data, IF from the imbedded
range flags, ana WF for the wideband ranging amplifier for the SM fi'ter data). The sudden
drop starts in the data frame for time 67095 and continues through time 67138 with sporadic
normal-appearing readings sprinkled throughout the last 11 seconds ot the outage. Nothing car.
be done with dropouts of this magnitude other than to replace them with a linear interpolation
segment so that the detrending process will not be seriously affected. We found three such
dropouts in the six partial orbits we processed; none of them, fortunately, in one of the §-
minute analysi» periods.
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Figure B-N3, Expanded plot of the ion density centered on the voltage offset feature lateled A
in Figures B-01 and B-02.
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Figure B-04. Expaudeii plot of the fon density centesed on the voltage offset feature labeled B
in Figures B-01 and B-02.
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Figure B-0S. Expanded plot of the jon density centered on the voltage offset feature labeled D

in Figures B-01 and B-02.
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Figure B-06. Expanded plot of the ion density centered on the feature labeled I in Figure B-01.
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Figure B-07. Raw SM telemetry data list showing an example of severe data dropout.

column labeled TIME is the time since midnight in seconds, RNG is the value of the range-data

word, EL/AMP DATA are the 24 data samples, RF is the EL/AMP range derived from the

range data, IF is a range derived from imbedded range flags, and WF is the WIDEBAND range

derived from the range data.




